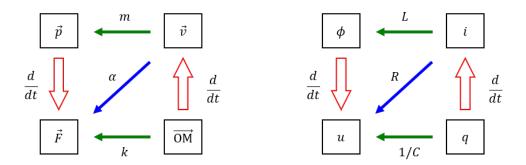
Chapitre M4 – Oscillateurs mécaniques

I) Force de rappel élastique

1) Analogie électromécanique

Nous verrons dans tous le chapitre qu'il existe une forte analogie entre l'électrocinétique et la mécanique.



Avec cette analogie, on peut retrouver ou prédire des relations.

 \circ Énergie stockée par une bobine \leftrightarrow Énergie cinétique :

$$\frac{1}{2}Li^2 \qquad \leftrightarrow \qquad \frac{1}{2}mv^2$$

o Énergie stockée par un condensateur \leftrightarrow Énergie potentielle élastique :

$$\frac{1}{2}Cu^2 = \frac{q^2}{2C}$$
 \leftrightarrow $\frac{1}{2}kx^2$ avec : $x = \ell - \ell_0$

 $\circ\,$ Pulsation propre du système :

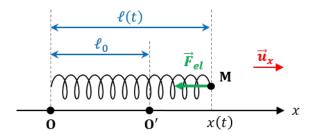
$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad \leftrightarrow \qquad \omega_0 = \sqrt{\frac{k}{m}}$$

o Facteur de qualité :

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \qquad \leftrightarrow \qquad Q = \frac{\sqrt{mk}}{\alpha}$$

2) Choix de l'origine de l'axe

Soit O un point fixe. On considère un système masse ressort à l'horizontal.



On rappelle la loi de Hooke :

$$\overrightarrow{F} = -k \left(\ell - \ell_0\right) \overrightarrow{u}_x$$

Il existe alors deux choix pertinent pour placer l'origine de l'axe des x.

Origine à l'extrémité O du ressort Origine à la position d'équilibre O'
$$\ell(t) = x(t) \qquad \qquad \ell(t) = x(t) \qquad \qquad \ell(t) = x(t) + \ell_0$$
 Force de rappel
$$\overrightarrow{F} = -k \left(x - \ell_0 \right) \overrightarrow{\iota}_x \qquad \qquad \overrightarrow{F} = -kx \overrightarrow{\iota}_x$$
 PFD
$$m\ddot{x} = -k \left(x - \ell_0 \right) \qquad \qquad m\ddot{x} = -kx$$
 ED
$$\ddot{x} + \omega_0^2 x = \omega_0^2 \ell_0 \qquad \qquad \ddot{x} + \omega_0^2 x = 0$$

Avec : $\omega_0 = \sqrt{\frac{k}{m}}$ la pulsation propre du système.

On retrouve bien un oscillateur harmonique dont la forme canonique générale de l'ED est :

$$\ddot{x} + \omega_0^2 x = \omega_0^2 x_{\rm SP}$$

où la solution particulière $x_{\rm SP}$ représente physiquement la position d'équilibre du système. Attention : la position d'équilibre dépend du choix de l'origine de l'axe.

3) Oscillateur harmonique

On choisit O, origine de l'axe. L'ED est :

$$\ddot{x} + \omega_0^2 x = \omega_0^2 \ell_0$$

La solution est:

$$x(t) = \underbrace{A \cos(\omega_0 t) + B \sin(\omega_0 t)}_{\text{SEH}} + \underbrace{\ell_0}_{\text{SP}}$$

Conditions initiales (exemple) : la longueur du ressort vaut ℓ_1 et il est lâché sans vitesse initiale.

Position initiale:

$$x(0) = \ell_1 = A + \ell_0 \implies A = \ell_1 - \ell_0 \implies x(t) = (\ell_1 - \ell_0)\cos(\omega_0 t) + B\sin(\omega_0 t) + \ell_0$$

Vitesse initiale:

$$\dot{x}(t) = -\omega_0 \left(\ell_1 - \ell_0\right) \sin(\omega_0 t) + \omega_0 B \cos(\omega_0 t) \quad \Rightarrow \quad \dot{x}(0) = 0 = \omega_0 B \quad \Rightarrow \quad \boxed{x(t) = (\ell_1 - \ell_0) \cos(\omega_0 t) + \ell_0}$$

4) Oscillateur amorti

On ajoute une force de frottement fluide de la forme :

$$\overrightarrow{f} = -\alpha \overrightarrow{v}$$

Le PFD donne:

$$m\ddot{x} = -\alpha \dot{x} - k (x - \ell_0)$$
 \Rightarrow $\ddot{x} + \frac{\alpha}{m} \dot{x} + \frac{k}{m} x = \frac{k}{m} \ell_0$

On identifie la pulsation propre et le facteur de qualité :

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 et $\frac{\omega_0}{Q} = \frac{\alpha}{m}$ \Rightarrow $Q = \frac{\omega_0 m}{\alpha} = \frac{\sqrt{mk}}{\alpha}$

L'allure de la solution dépend de la valeur du facteur de qualité.

5) Bilan énergétique

Par analogie avec l'électronique :

- o PFD
- \circ Multiplier par $\overrightarrow{v} \to \text{bilan de puissance}$

 $\circ\,$ Intégrer par rapport au temps \to bilan d'énergie

PFD (oscillateur amorti projeté sur Ox):

$$m\ddot{x} = -\alpha \dot{x} - k\left(x - \ell_0\right)$$

On multiplie par \dot{x} (vitesse projetée sur Ox) :

$$m\dot{x}\ddot{x} = -\alpha\dot{x}^2 - k\dot{x}\left(x - \ell_0\right) \quad \Rightarrow \quad \underbrace{\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^2\right)}_{\mathcal{P}_{\text{cin}}} = \underbrace{-\alpha\dot{x}^2}_{\mathcal{P}_{\text{frott}}} \underbrace{-\frac{d}{dt}\left(\frac{1}{2}k\left(x - \ell_0\right)^2\right)}_{\mathcal{P}_{\text{cl}}}$$

Avec:

o $\mathcal{P}_{\mathrm{frott}} = -\alpha \dot{x}^2 < 0$ la puissance reçue par la force de frottement (négative, la force prélève de l'énergie)

o
$$\mathcal{P}_{\text{el}} = -\frac{d}{dt} \left(\frac{1}{2} k \left(x - \ell_0 \right)^2 \right)$$
 la puissance reçue par la force de rappel

On rappelle que pour les forces conservatives :

$$\mathcal{P} = -\frac{d\mathcal{E}_p}{dt}$$

On en déduit (il s'agit en réalité du TPM) :

$$\frac{d}{dt} \left(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} k \left(x - \ell_0 \right)^2 \right) = -\alpha \dot{x}^2 \quad \Rightarrow \quad \frac{d \mathcal{E}_m}{dt} = -\alpha \dot{x}^2 < 0$$

L'énergie mécanique du système diminue jusqu'à l'arrêt de la masse.

En l'absence de frottements, ie. $\alpha = 0$, le bilan de puissance donne :

$$\frac{d\mathcal{E}_m}{dt} = 0 \quad \Rightarrow \quad \mathcal{E}_m(t) = \mathcal{E}_m(0)$$

L'énergie mécanique se conserve.

II) Mouvement autour d'une position d'équilibre

1) Rappels

On se place proche d'une position d'équilibre (x_{eq}) stable.

$$\mathcal{E}'_p(x_{eq}) = 0$$
 et $\mathcal{E}''_p(x_{eq}) = k > 0$

L'approximation harmonique consiste à approximer $\mathcal{E}_p(x)$ pour x proche de x_{eq} par un polynôme d'ordre 2 (ie. une parabole). Cette approximation est donnée par la formule de Taylor à l'ordre 2 :

$$\mathcal{E}_p(x) \simeq \mathcal{E}_p(x_{eq}) + (x - x_{eq}) \,\mathcal{E}'_p(x_{eq}) + \frac{1}{2} \left(x - x_{eq}\right)^2 \,\mathcal{E}''_p(x_{eq}) \quad \Rightarrow \quad \boxed{\mathcal{E}_p(x) \simeq \frac{1}{2} k \left(x - x_{eq}\right)^2 + cte}$$

On retrouve donc exactement l'énergie potentielle élastique d'un ressort.

Propriété:

Tout système, proche d'une position d'équilibre stable, se comporte comme un système masse ressort. En effet, dans l'approximation harmonique, le système subit une force :

$$F(x) = -\frac{d\mathcal{E}_p}{dx} = -\frac{d}{dx} \left[\frac{1}{2} k \left(x - x_{eq} \right)^2 + cte \right] = -k \left(x - x_{eq} \right) \quad \Rightarrow \quad \overrightarrow{F}(x) = -k \left(x - x_{eq} \right) \overrightarrow{u}_x$$

On en déduit l'équation différentielle du mouvement. Le TPM donne :

$$\frac{d\mathcal{E}_m}{dt} = 0 \quad \Rightarrow \quad \frac{d}{dt} \left[\frac{1}{2} m \dot{x}^2 + \frac{1}{2} k \left(x - x_{eq} \right)^2 + cte \right] = 0$$

$$\Rightarrow \quad m \dot{x} \ddot{x} + k \left(x - x_{eq} \right) = 0$$

$$\Rightarrow \quad m \ddot{x} + k x = k x_{eq}$$

$$\Rightarrow \quad \left[\ddot{x} + \omega_0^2 x = \omega_0^2 x_{eq} \quad \text{avec} : \quad \omega_0 = \sqrt{\frac{k}{m}} \right]$$

Ce système est un **oscillateur harmonique**. Si on ajoute une perte d'énergie, le système va converger vers sa position d'équilibre.

2) Application : interaction intermoléculaire

Exercice TD : Potentiel de Lennard-Jones